x41, The EXFOR interface

David Brown, March 4, 2011

Introduction

The x41 package is an interface to the EXFOR nuclear data library. It simplifies retrieval of EXFOR
entries and can automatically parse them, allowing one to extract cross-section (and other) data in
a simple, plot-able format. x4 1i also understands and can parse the entire reaction string, allowing
one to build a strategy for processing the data.

EXFOR is a structured markup language for representing measured nuclear data. Itis an old
format, and is awkward to use for several reasons:
* Itrelies on data being in the correct columns in order to denote context. This is a legacy
feature since EXFOR data used to be stored on FORTRAN punch cards.
* The data was often hand-entered so the format rules were not always rigorously obeyed
(fortunately WPEC SubGroup 30 has remedied much of this ensuring that EXFOR data can
be translated into C4 format, see ref. [1]).
* The mark-up language is surprisingly complex (see refs [2-5]).
Figures 1-5 illustrate the structure of the EXFOR format.

EXFOR Format of the compilation

Reference
Author
Target

> General
information

Angle

Experimental

s data

Figure 1. Structure of an EXFOR entry. The bibliographic information is always contained in the
first subentry of an entry and given the index ‘001’. Common data is data common to all data
block in all subentries and is found in the ‘001’ subentry. Each dataset is given its own subentry,
beginning with subentry ‘002.’

REQUEST B697001 20051219 3 143041 [0
ENTRY 30528 840911 30528000 1 -\
SUBENT 305Z8001 840911 30528001 1
BIB 12 18 30528001 4
INSTITUTE (3RUMBUC) 30528001 3
REFERENCE (J,JAC,12,399,79) 30528001 4
(P, INDC (SEC) ~61,3205,7710) NO DATA GIVEN. 30528001 5
AUTHOR (B.GRABCEV, 5. TODIREANU,V.CICCAR) 30528001 6
TITLE TOTAL THERMAL NEUTRON CROSS-SECTIONS OF AL,SI,CU,ZN,GE|30528001 7
PE AND BI SINGLE CRYSTALS. 30528001 B Bl l 1 .
EXP-YEAR (1 30528001 9 "
FACILITY (CHOPS, 3RUMBUC) 30528001 10 10 1Og1a]-) uc
INC-SOURCE (REAC) VVR-S REACTOR. 305z8001 11 1 » 1
METHOD (TOF) 30528001 1z ultorlllatl()]l
TRANSMISSTION MEASUREMENT. 30528001 13
IN ORDER TO REMOVE COHERENT EFFECTS, THE MEASUREMENTS |30528001 14
WERE REPEATED SEVERAL TIMES AFTER SLIGHT REORIENTATION|30528001 15
OF THE SAMPLE IN THE NEUTRON BEAM. 305z8001 16
MONITOR ABSOLUTE, TRANSMISSION MEASUREMENT. 30528001 17
STATUS NUMERICAL DATA FROM B.GRABCEV AS PRIV.COMM.,79/11/26. |30528001 1e
HISTORY (B0010BC) KO. 30528001 19
ERR-ANALYS STANDARD DEVIATION IS GIVEN. 30528001 20
ENDBIB 18 30528001 21 _/

Line mdex

Figure 2. A close-up on the first subentry showing the bibliographic data.

REQUEST B6%7001 20051219 3 143041 0 a 0
ENTRY 30528 840911 30528000 1
SUBENT 30528001 B40911 30528001 1
BIB 12 18 30528001 2 . .
INGTITUTE (ARUGUC) foane Journal reference
REFERENCE (J,JAC,12,399,79) w— 30528001 4

(P, INDC ({SEC) -61,305,7710) NO DATA GIVEN. <t 20528001 L : :
AUTHOR (B.GRABCEV, 5.TODIREANU,V.CICCA) 305z8001 6 second reference (lf eXlStS) ‘
TITLE TOTAL THERMAL NEUTRON CROSS-SECTIONS OF AL, 517 28001 7

PE AND BI SINGLE CRYSTALS. 305280 F——J

Authors” names

EXP-YEAR (1 30528001 9
FACILITY (CHOPS, 3RUMBUC)
NC-SOURCE (REAC) VVR-3 REACTOR. ‘ K -
METHOD (TOF) 30528001 1z

P S — G2 £ | Publication title
IN ORDER TO REMOVE COHERENT EFFECTS, THE MEASUREMENTS 30528001 14
WERE REPEATED SEVERAL TIMES AFTER SLIGHT REORIENTATION 30528001 15

OF THE SAMPLE IN THE NEUTRON BEAM. 30528001 16
MONJTOR ABSOLUTE, TRANSMISSION MEASUREMENT. 30528001 17
STAYUS NUMERICAL DATA FRCM B.GRABCEV A3 PRIV.COMM.,79/11/26. 30528001 18
HISJORY (B0010BC) KO. 30528001 19
ERRJANAIYS STANDARD DEVIATION IS GIVEN. 30528001 20
|ENDHIB 18 30528001 231

Method used to extract the quantity presented m “DATA™

— Information on the particle source (accelerator, reactor. . .)

— Experimental facility

Figure 3. An even closer look at the details of the bibliographic data. Here one can see how the
authors’ names, institutions and publication information are specified.

Start of the common
section
30113001
30113001 2 .
aussaons } Common section
113001
30113001

End of the common
section

Information on the mcident
beam energy

Figure 4. A sample COMMON data section. In this case, the beam energy for all data in subsequent
subentries is given.

Reaction

SUBENT 22117005 891211 22117005 1 '\
BIE 3 4 22117005 2 :
REACTION {13-AL-2T(N,T9T), ,SIG) 22117005 3 EXpenmental
STATUS .DATA OBTRINED FROM MRIN REF. 22117008 4 -_’-_-_, .
HISTORY (891007C) N.O. 22117005 S
(8912118) 22117008 " data (111 XayaAy
ENDBIE 4 5 7
NOCOMMON 0 0 22117005 B fOl]]])
DATA 3 22 22117005 §
EN DATA DATA-ERR 221170058 10
MEV ME MB 22117005 11
1.6000E+02 6.82005+02 1.4000E+01 22117005 12
1.B0D0E+02 6.17005+02 1.4000E+01 22117005 13
2.0000E+02 5.62005+02 1.3000E+01 22117005 14
2.2000E+02 5.75005+02 1.3000E+01 22117005 15
2.4000E+02 5.73005+02 1.2000E+01 22117005 16
2.6000E+02 5.45005+02 1.2000E+01 22117005 17)
2.BODOE+02 5.5000E+02 1.2000E+01 22117005 18
3.0000E+02 5.7000E+02 1.2000E+01 22117005 19 EXpemnental
3.2000E+02 5.7900E+02 1.3000E+01 22117005 20 .
3.4000E+02 5.7400E+02 1.3000E+01 22117005 21 data SeCt]_O]]_
3.6000E+02 5.8200E+02 1.5000E+01 22117005 22
3.BODOE+02 5.8000E+02 1.6000E+01 22117005 23
4.0000E+02 5.8000E+02 1.T000E+01 22117005 24
4.2000E+02 6.0900E+02 1.B000E+01 22117005 25
4.4000E+02 5.9700E+02 1.B000E+01 22117005 26
4.6000E+02 5.9300E+02 1.7000E+01 22117005 27
4.B0D0E+02 6.41008+02 1.7000E+01 22117005 28
5.0100E+02 6.2500E+02 1.4000E+01 22117005 29
5.2100E+02 6.2000E+02 1.4000E+01 22117005 30
5.4000E+02 6.2900E+02 1.0000E+01 22117005 31
5.5900E+02 6.3000E+02 1.3000E+01 22117005 3z
5.7500E+02 6.6000E+02 3.1000E+01 22117005 33
[ENDDATR 24 22117005 34
ENDESUBENT 3z 2211700599999
ENDENTRY 2 2211799999999 /
ENDREQUEST 1 2999999999999

Figure 5. A sample DATA section. DATA sections contain the actual data from a measurement.
This is combined with the data in COMMON data to produce an instance of the X4DataSet class
detailed later in this report.

Installation
Installation of x4 1 is straightforward.

From the subversion repository:
* Checkout the code:

host$ svn co svn+ssh://username@ocfmachine.llnl.gov/usr/gapps/CNP_src/
all/live repos/svnRepos/x4i/trunk/x4i

You must be a member of the ndg group on LLNL’s OCF facility.
* Unpack the EXFOR data contained in the repository:

|host$ python x4i/setupEXFORdb.py -u

* Putx4iinyour PYTHONPATH.
* That'sit!

From a tarball:
* Unpack the code:

|host$ tar xzf xvi-1.0.tar.gz

* Putx4i inyour PYTHONPATH
* That'sit!

Basic usage

Now we describe how to use x4i. We begin by explaining how to query the EXFOR database and
how to retrieve data. All retrievals and queries are handled by the classes in the

exfor manager module. The class X4DBManagerDefault defaults to the
X4DBManagerPlainFs§ class and this is the class supported out of the box by x4i. Here is an
example of its use:

host$ python

Python 2.6.4 (r264:75706, Dec 22 2009, 09:45:51)

[GCC 4.0.1 (Apple Inc. build 5493)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> from x4i import exfor manager, exfor entry

>>> db = exfor manager.X4DBManagerDefault()

>>> help(db)

Help on instance of X4DBManagerPlainFS in module x4i.exfor manager:

class X4DBManagerPlainFS (X4DBManager)
| Exfor data base manager for data stored on local filesystem in
directory hierarchy.

| Methods defined here:
|
| _ init (self, **kw)
|

| query(self, author=None, reaction=None, target=None, projectile=None,
quantity=None, product=None, MF=None, MT=None, C=None, S=None, I=None,
SUBENT=None, ENTRY=None)

|

| retrieve(self, author=None, reaction=None, target=None,
projectile=None, quantity=None, product=None, MF=None, MT=None, C=None,
S=None, I=None, SUBENT=None, ENTRY=None)

Once the database manager is initialized, we can run a query:

>>> db.query(author='Panitkin')

{u'40177"': [u'40177001', u'40177002', u'40177003'], u'40121"':
[u'40121001', u'40121002'], u'40431': [u'40431001', u'40431002"'],
u'41335"': [u'41335001', u'41335002"']}

All queries return a Python dict. The keys of the dictionary are the EXFOR entry number (the ‘u’
preceding the entry simple tells us that the key is encoded in Unicode). The values of the
dictionary are a list of subentry numbers of the EXFOR entry whose contents match the query
search criteria. If a particular subentry matches the search criteria, the corresponding
documentation subentry (the ‘001’ subentry) is also returned. The complete list of search criteria
are given in Table 1. A partial list of searchable observables is given in Table 2.

Retrievals also can be made using the database manager:

>>> db.retrieve(author='Panitkin')

{u'40177': ["SUBENT 40177001 20021225 20030502 20050926
0000\nBIB 12 44\nINSTITUTE (4RUSFEI)\nREFERENCE
(J,AE,33,825,197210) Table of Data and Graph are\n

Given\nAUTHOR (YU.G.PANITKIN,V.A.TOLSTIKOV)\nTITLE Radiative

The search result from a retrieval is identical to that of the queries except that the subentry
number is replaced by a string containing the entire text of the subentry.

Translating data retrieved using x4 1 is also simple:

>>> x = db.retrieve(target="'PU-
239',reaction='N,2N',quantity='SIG',author='Lougheed’')
>>> x.keys()

[u'13883"]

>>> y = exfor entry.X4Entry(x['13883'])

Here we've run aretrieval to get some cross-section data and then inserted the entire entry
13883 into the constructor for the X4Entry class of the exfor entry module. The X4Entry
class instance (and its components) handle all of the parsing of the EXFOR entry.

In the following section, we will detail some of the things one can do with an X4Entry instance.
For now, we'll just illustrate how to extract the cross-section data in a format we can plot:

>>> dss = y.getSimplifiedDataSets()

>>> dss.keys|()

[('13883', '13883002', ' ")]

>>> print dss[('13883', '13883002', ' ')]

Authors: R.W.Lougheed, W.Webster, M.N.Namboodiri, D.R.Nethaway,
K.J.Moody, J.H.Landrum, R.W.Hoff, R.J.Dupzyk, J.H.Mcquaid, R.Gunnink,
E.D.Watkins

Title: 239Pu And 241Am(N,2N) Cross-Section Measurements Near E(N)
= 14 Mev

Year: 2002

Institute: Lawrence Livermore National Laboratory, Livermore, CA
Reference: Radiochimica Acta 90, 833 (2002)

Reaction: Cross section for 239Pu(n,2n)238Pu

Energy Data d(Data)

MeV barns barns

13.8 0.228 0.006384
14.0 0.219 0.007884
14.8 0.214 0.002996

>>> open(’‘plotfile.dat’,mode='w’).writelines(str(dss[('13883','13883002",
1)

What we've done here is extract all the datasets in our X4Entry instance using the
getSimplifiedDataSets () member function. The results are stored in another Python
dict, this time keyed off with a Python tuple with the following structure: (entry #,
subentry #, pointer). In this case, there is no pointer so that spot is taken by a string
comprising a single space character. In other cases, the pointer may be number either referring to
additional data. We will explain this further in the next sections.

Search Implemented
Criteria Details in version 1.0
author Only one author may be specified and only the family name Yes
should be given. Proper capitalization must be used.
reaction Enter in form “projectile,products,” e.g. N, 2N or N, F or Yes
D, 3N+P. Wildcards may be used, e.g. *, 2N.
target Enter in form “SYM-Z,” e.g. HE-3. The symbol should be in Yes
upper case.
projectile | The standard ENDL set are supported, namely: N, P, D, T, A, G, Yes
HE-3. Additionally, the projectile may be any nucleus of form
“SYM-Z” (provided such heavy-ion data exists in EXFOR).
quantity This defines the observable, e.g. cross-section is SIG. Table 2 Yes
lists the supported quantities.
product Residual nucleus (if any) of a particular reaction. Enter in form | Yes, partially
“SYM-Z,” e.g. HE-3. The symbol should be in upper case.
MF The ENDF quantity, e.g. MF=3 is cross-section data. No
MT The ENDF reaction, e.g. MT=18 is fission. No
C The ENDL reaction, e.g. C=12 is (n,2n). No
S The ENDL reaction modifier, e.g. S=1 denotes discrete level No
excitations.
I The ENDL quantity, e.g. [=1 denote angular probability No
distributions, P(E|w).
SUBENT The EXFOR Subentry number. Itis 8 characters long and the Yes
last 3 digits specify the subentry within the EXFOR entry
corresponding to the first 5 characters.
ENTRY The EXFOR Entry number. Itis 5 characters long. Yes

Table 1. Valid search keys for queries and retrievals from the EXFOR database manager classes.

Variations on

Simplified

quantity translation of
Quantity Details supported data available
DA Angular distribution do(E)/du EVAL Yes
DA/DE Double differential data do(E)/dudE’ No, high priority
DE Energy distribution do(E)/dE’ EVAL Yes
FY Fission yields No
NU Average number of neutrons emitted in EVAL, PR Yes
fission event v(E)
NU/DE Fission neutron spectrum dv(E)/dE’ No
POL/DA | Polarization No, high priority
POT Potential scattering parameter No
RI Resonance integral of cross-section No
SIG Cross-section o(E) or average cross-section | EVAL, MXW, SPA, Yes

in some variations of this observable.

FST,RTE, FIS, AV

Table 2. A selection of supported quantities. The full list is given in EXFOR dictionary 30 (see ref.

[31)

The X4Entry class
In this section, we provide a more detailed look into the X4Entry class and its use. A partial list
of member functions is provided in Table 3.

Let us begin the discussion by picking up where we left off in the previous section’s example. We
return to the X4Entry in the Python variable ‘y’:

>>> y = exfor entry.X4Entry(x['13883'])
>>> y.keys()
['13883001"',
>>> type(
<class

'13883002"']
yi1l])

'x4i.exfor subentry.X4SubEntry'>

In this simple example, we have illustrated that X4Entrys are really Python dicts, with keys

being the subentry accession number (in this case, abbreviated to ‘1’) and values being instances
of the X4SubEntry class. Note that the subentry accession numbers 1, ‘1’, ‘'001’, 13883001, and
‘1388301’ are all equivalent. Continuing:

>>> y['1"].keys()

['BIB']

>>> y['1']['BIB'].keys()

["STATUS', 'REFERENCE', 'FACILITY',
'"AUTHOR', 'HISTORY']

>>> y['1']['BIB']['REFERENCE']
REFERENCE (J,RCA,90,833,2002)

>>> str(y['l']['BIB']['REFERENCE'])
'Radiochimica Acta 90, 833 (2002)'

'"INSTITUTE',

'"TITLE',

'INC-SOURCE ',

Clearly X4Entrys and X4SubEntrys are simply nested Python dicts whose keys and values
correspond to the structure of the original EXFOR (sub)entry. This example illustrates one other

point: the Python stxr () operator returns a “pretty” version of what it acts on. In this case, the
reference field of the bibliography section of subentry #1.

Arguments
Function (other than self) Description
str () Enables Python str () function: the
“pretty” string formatter. Recursively
applies str () to all components of self.
__repr_ () Enables Python repr () function: the

“representation” string formatter (strings
returned by this function are nearly
equivalent to the original EXFOR entry).
Recursively applies repr () to all
components in self.

__getitem_ (key)

key

Enables element access with the []
operator (e.g. [key])Return the
X4SubEntry instance with subentry
number key.

deleted()

Returns True if this entry has been deleted
(a skeletal version of the entry remains in
the EXFOR database though).

getDataSets ()

Returns a Python dict containing all of the
X4DataSets contained in self. The keys
ofthedict area tuple: (entry #,
subentry #, pointer).

getSimplifiedDataSets
()

makeAllColumns

False

Similar to getDataSets except that data
has been parsed (if possible), producing a
simpler dataset that may be interpreted
easier (and plotted!). See X4DataSet
below.

meta()

Return an instance of the meta data derived
from self.

meta().citation()

Returns a string containing the citation for
the current entry. Suitable for publication.

meta().legend()

Returns a string containing information for
the current entry. Suitable for use as a plot
legend.

meta () .xmgraceHeader (

)

Returns a string containing information for
the current entry. Use this as the header for
a dataset you are plotting in xmgrace.

Table 3. Member function reference for the X4Entry class and the X4EntryMetaData class.
Functions in the X4EntryMetaData class are prefixed with the meta () call from the X4Entry

class.

There are two other functions to elaborate, the getSimplifiedDataSets () and
getDataSets () function. Both return dicts whose values are X4DataSets, either “plain” or
“simplified.” In the next section we will describe the X4DataSet and explain the difference
between a “plain” X4DataSet and a “simplified” X4DataSet. Here we illustrate the use of either
function:

>>> dss = y.getSimplifiedDataSets()
>>> dss.keys|()
[("13883', '13883002', ' ')]

This function returns a Python dict whose keys are a tuple: (entry #, subentry #,
pointer). The EXFOR pointer here is a string consisting of a space. In many EXFOR subentries,
the EXFOR compilers chose to store multiple datasets. To distinguish them (and to map the data
to other fields in the EXFOR entry), the compilers gave the sets a distinct one character pointer.
When x41i encounters such a case, the dict returned from getSimplifiedDataSets () will
have one key per pointer.

The X4DatasSet class

The X4DataSet class and its subclasses are probably the class most users of x4 i will become
familiar with first as instances of these classes contain the experimental data one wishes to plot
and/or manipulate. In the previous section we introduced two functions in the X4Entry class
that return dicts containing X4DataSets. We also introduced the concept of “plain” and
“simplified” datasets. Figure 6 shows the csv output of the X4DataSet, retrieved in the previous
section, in its “plain” form and its “simplified” form. As one can see, both contain the same data,
but the “simplified” set is in consistent units and extraneous columns have been removed.

< A B C D < A B C

1 |EN DATA DATA-ERR MONIT 1 |Energy Data d(Data)

2 MEV MB PER-CENT MB 2 MeV barns barns

3 13.8 228 2.8 2112 3 13.8 0.228 0.006384
4 14 215 3.6 2112 4 14 0.219 0.007884
g 14.8 214 1.4 2136 5 14.8 0.214 0.002996
= 5

8 7

9 8

10 9

11 10

12 11

13 12

14 13

15

16 14

17 15 . .
—— | orig.csv + | = = simp.csv _ +

B |E) (&) S e =

Figure 6. Difference between a “plain” X4DataSet (on the left) and a “simplified” X4DataSet (on the
right). Note that the units for the simplified set are consistent between a data column and an
uncertainty column. Also notice that cross sections are always given in barns and energies in MeV.
Table 4 lists all the units supported in “simplified” X4DataSets.

Column Label Units Comments
Data barns, barns/ster, 1/MeV | Unit choice depends on nature of the observable.
ptcls/fis, no-dim Maybe dimensionless if data is ratio data.
Energy MeV Incident energy
E’ MeV Outgoing energy
Angle degrees

Table 4. Column names and units in simplified X4DataSet's.

As one can see in Figure 6, one can think of an X4DataSet as a spreadsheet containing the dataset’s

values. Indeed, the Python __getitem operator allows us to directly access elements in this
spreadsheet:

>>> myset = ds[('13883', '13883002', ' ')]
>>> myset['LABELS', 0]

"EN

>>> myset['LABELS', 1]

'DATA'

>>> myset['UNITS', 1]

'MB"

>>> myset[0, 1]

228.0

Of course, X4DataSets also come with meta data describing the set:

>>> myset.legend()

'(2002) R.W.Lougheed, W.Webster, et al.'

>>> myset.citation()

'R.W.Lougheed, W.Webster, et al., Radiochimica Acta 90, 833 (2002); Data
taken from the EXFOR database, file EXFOR ?222?22.22? dated 2002, retrieved

from the IAEA Nuclear Data Services website.'

Next, we point out the two methods for exporting the data, the csv ()and the str () functions.
The csv () function exports the dataset to a comma separated value file, suitable for viewing in
Microsoft Excel. The str () function returns a string that can be viewed in the xmgrace plotting
package. The complete list of member functions for the X4DataSet class is given in Table 5.

Finally, we want to elaborate on the implementation of “simplified” X4DataSets. When the
getSimplifiedDataSets () function is called from, it in turn calls the getDataSets ()
function to get all of the data in an X4Entry. Then, the X4DataSet function
getSimplified() is called to attempt to convert the X4DataSet into its simpler form.

Currently very few quantities in EXFOR can be converted to simpler forms. The list as of version
1.0 of x41 is given in Table 2.

Arguments

Function (other than self) Description
__str__ () Enables Python str () function: the “pretty”
string formatter.
__repr_ () Enables Python repr () function: the

“representation” string formatter (strings
returned by this function are nearly
equivalent to the original EXFOR).

__getitem ((i |i,3]

r3))

Access the data element in row i column j.
If i =‘LABELS’ or ‘UNITS’, then the
corresponding string heading the column is
returned.

citation()

Returns a string containing the citation for the
current entry. Suitable for publication.

csv(£) f Writes data in self to file £ in CSV format.
The CSV format stands for “Comma Separated
Value” and may be read by MS Excel.

getSimplified(|makeAllColumns = Returns an X4DataSet that has been

) False, “simplified.” See the main text for what that

= False

failTfMissingErrors

entitles. If the optional argument
makeAllColumns is True, every data
column will be accompanied by an
uncertainty column even if one is not present
in the original data. If the optional argument
failTfMissingErrorsis True, an
exception will be raised if there is no
uncertainty column accompanying one or
more data columns.

legend()

Returns a string containing information for
the current entry. Suitable for use as a plot
legend.

Table 5. Member function reference for the X4DataSet class and subclasses.

Changing/upgrading the source database

To update or change the source database, you will need a copy of the new database from the IAEA.
It is available as a zipfile downloaded from the IAEA website: http://www-nds.iaea.org/x4toc4-
master/. There are two sets of files there. Those with the name of the form X4 -

releasedate.zip are the ones usable by x41.

To install the IAEA library, assuming that your zip file is named X4-releasedate.zip:

| host$ python x4i/setupEXFORdb.py —iX4-releasedate.zip

Please read the help message (python setupEXFORdb.py —h) for more information.

Bibliography

[1] A.Koning, “WPEC Subgroup 30: Quality improvement of the EXFOR database Status report
June 2009,” NEA report number NEA/NSC/WPEC/D0OC(2009)416 (2009).

[2] O. Schwerer, “LEXFOR,” IAEA Nuclear Data Section report number [AEA-NDS-208, Vienna,
Austria (2008).

[3] O. Schwerer, “EXFOR Exchange Formats Manual,” IAEA Nuclear Data Section report number
[AEA-NDS-207, Vienna, Austria (2008).

[4] O. Schwerer, “EXFOR/CINDA Dictionary Manual,” IAEA Nuclear Data Section report number
[AEA-NDS-213, Vienna, Austria (2008).

[5] O. Schwerer, “EXFOR Basics Manual,” JAEA Nuclear Data Section report number [AEA-NDS-

206, Vienna, Austria (2008).

